terça-feira, 24 de março de 2009

O paradoxo matemático do tabuleiro de xadrez

Retirado do site do Chessbase (EN)

A Mathematical Chessboard Paradox
24.03.2009 – In Germany 2008 was the “Year of Mathematics”, and at the same time there was a Chess World Championship and a Chess Olympiade in the country. Reason enough to take a look at an interesting problem at the interface of these two intellectual activities. It is a fascinating paradox which seems to prove that 64 is equal to 65 simply by cutting up a chessboard. Prof. Christian Hesse explains.

Chess Expeditions

By Prof. Christian Hesse

Ultimately chess is just chess - not the best thing in the world
and not the worst thing in the world, but there is nothing quite like it. – W.C. Fields

A Mathematical Chessboard Paradox

The Federal Ministry of Science and Research in Germany had proclaimed 2008 the “Year of Mathematics”. In addition, in 2008 both a Chess World Championship and a Chess Olympiade took place, so that one may also think of 2008 as the “Year of Chess”. This provides more than enough reason to look at an interesting problem at the interface of these two intellectual activities: mathematics and chess. It is a fascinating paradox which seems to prove that 64 is equal to 65 simply by cutting a chessboard (which, of course, consists of 64 squares) into four pieces and by assembling these pieces into a rectangle whose sides are made up of 5 squares and 13 squares, respectively (which, of course, results in an area of 5 . 13 = 65 squares).

Specifically, what I have in mind is this:

With three straight cuts the chessboard has been dissected into two equal triangles and two equal trapezoids. The sum of the areas of these four pieces is 64 little squares of the chessboard. These four geometric pieces of the chessboard dissection may now be reassembled into the following rectangle.

Please compare each of the four pieces in the two diagramms. The sides of the resulting rectangle are made up of 5 and (8+5) = 13 little squares. Hence the area of the rectangle is 5 x 13 = 65. These are the same four pieces as cut out from the chessboard, only arranged differently. Hence their total area must also be the same.

Therefore, we have proved that 64 = 65! Obviously, this is not true and there must be a mistake somewhere. Can you find it?

What lies at the center of the above paradox are drawing inaccuracies of the lines that make up the triangles and the trapezoids and hence the rectangle. Drawn at a higher resolution, the above diagramm should look like this:

And zooming in on the central area one sees the rift between upper and lower parts even more clearly:

The area highlighted in red in the above diagramms has the shape of a very long parallelogram. It is responsible for the difference in area between the square and the rectangle.

A similar dissection paradox can be constructed when starting with a 13x13-square and rearranging the two triangles and two trapezoids that make it up into a 21x8-rectangle in a similar fashion as above:

Again at a higher resolution we have:

The area colored in red is again a parallelogram of area 1 where this time the upper and lower parts do overlap. Hence in this case, there is no rift here, but the resulting rectangle has a smaller area (=168) than the original square (=169) due to the overlapping.

What is the mathematical core of this paradox? To explain it in general, we start by mentioning the sequence of so called Fibonacci numbers Fn. This is a sequence of numbers in which each following number Fn+1 is defined as the sum of the two immediately preceeding numbers Fn and Fn-1. Hence:

What is the mathematical core of this paradox? To explain it in general, we start by mentioning the sequence of so called Fibonacci numbers Fn. This is a sequence of numbers in which each following number Fn+1 is defined as the sum of the two immediately preceeding numbers Fn and Fn-1. Hence:

Fn+1 = Fn + Fn-1 for all n = 1, 2, 3, …

The starting values are given by F0 = 0 and F1 = 1. Thus the first few values of the Fibonacci sequence are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

The above dissection paradox then seems to say that

Fn . Fn equals Fn+1 . Fn-1

Let us perform some simple calculations to see what is really going on:

Fn . Fn = Fn(Fn-1 + Fn-2) = Fn . Fn-1 + Fn . Fn-2

and

Fn+1 . Fn-1 = (Fn + Fn-1)Fn-1 = Fn . Fn-1 + Fn-1 . Fn-1

The difference Dn between these two products is:

Dn = Fn+1 . Fn-1 - Fn . Fn

= Fn-1 . Fn-1 - Fn . Fn-2

= -Dn-1 = (-1)2 Dn-2 = ... = (-1)n-1D1 = (-1)n

since D1 = F2 . F0 – F1 . F1 = 1 . 0 – 1 . 1 = (-1)1.

Therefore we have established the truth of what is known as Cassini`s identity:

Fn+1 . Fn-1– Fn . Fn = (-1)n

The conclusion is: One can always reorganize an Fn x Fn -square into an Fn+1 x Fn-1 -rectangle and the difference between their areas, namely Fn . Fn and Fn+1 . Fn-1 respectively, is (-1)n , i.e. either -1 or +1. In the first case, one has an overlap between the pieces. In the second case, there is a rift between them.

The next largest square for which the dissection works is a 21x21-square which in the above fashion may be reorganized into a 34x13-rectangle. You may work out how the 21x21-square needs to be cut by simply thinking of the Fibonacci sequence.


About the author

Christian Hesse holds a Ph.D. from Harvard University and was on the faculty of the University of California at Berkeley until 1991. Since then he is Professor of Mathematics at the University of Stuttgart (Germany). Subsequently he has been a visiting researcher and invited lecturer at universities around the world, ranging from the Australian National University, Canberra, to the University of Concepcion, Chile.

Recently he authored “Expeditionen in die Schachwelt” (Expeditions into the world of chess, ISBN 3-935748-14-0), a collection of about 100 essays that the Viennese newspaper Der Standard called “one of the most intellectually scintillating and recommendable books on chess ever written.”

Christian Hesse is married, has an eight-year-old daughter and a four-year-old son. He lives in Mannheim and likes Voltaire's reply to the complaint: ”Life is hard” – “Compared to what?”.

quarta-feira, 4 de março de 2009

Calendário de eventos enxadrísticos de Março

Retirado do site do Clubedexadrez.com.br

Calendário de março

Atualizado em 04/3 às 10h51 - Campeonato Paulista Interclubes prossegue no próximo fim de semana, que terá o Amazonense Sub 10 e Sub 8

28/2 a 14/3 Campeonato Roraimense Absoluto - em andamento - Boa Vista

28/2 a 8/3: Campeonato Paulista Interclubes - em andamento, categoria A schürig de 8 equipes, categoria B 37 equipes e categoria C 30 equipes - São Paulo

28/2: Etapa de abertura do 11º Circuito Catarinense Rápido - premiação na Divisão Superior: R$1.500,00 ($350,00 ao campeão) - encerrado, 167 jogadores. Na Categoria Superior (104), vitória do MF Charles Gauche com 6 em 7 e melhor desempate que Ricardo França, Haroldo Cunha Santos Júnior, Marcelo Augusto Bambino, Jorge Godois e Matheus Demertine. Na Categoria Especial, dobradinha de Criciuma: Eduardo Kammer fez 6,5 pontos e superou no desempate a Felipe Domingos - Imbituba

28/2: 5º Aberto Ana das Carrancas - encerrado - PE

28/2: Torneio Início da Federação Amazonense - encerrado, 60 jogadores e a vitória de Sebastião Alberto José Mousse, com 5,5 pontos nas 6 rodadas e melhor desempate que a WMF Thalita Cincinato - Manaus

1: 3ª Copa Américo Dinâmica - premiação: R$700,00 ($110,00 ao campeão) - encerrado - Américo Brasiliense/SP

1: Etapa inaugural da 6ª Copa Seesp de Rápidas - encerrada, 91 jogadores e a vitória de Luiz Paulo Broeto, com 5,5 pontos nas 6 rodadas e melhor desempate que Heitor de Almeida, com quem empatou na última - Limeira/SP

7 a 29: 2º Memorial Djalma Batista Cafaia - Rio de Janeiro

7 a 18: IRT CXG - Rio de Janeiro

7 e 8: Campeonato Amazonense Sub 10 e Sub 8 - Manaus

7: Etapa de abertura do Circuito Faculdade Católica Rainha do Sertão de Rápidas, válida pelo Estadual de Rápidas - Quixadá

7: 3º Torneio Feminino Dia Internacional da Mulher - inscrições gratuitas - Fortaleza

7: 2º Mini-Open Leitura - premiação mínima: R$100,00 ($50,00 ao campeão) - Campo Grande

8: Etapa inaugural do Circuito 6º Batalhão da Polícia Militar/Conjunto Esperança, válida pelo Circuito Estadual de Rápidas - premiação: R$125,00 ($50,00 ao campeão) - inscrições mediante a doação de 2 kg de alimentos não-perecíveis - Fortaleza

8: 3ª etapa do Circuito Quixadaense de Rápidas, válida pelo Circuito Estadual de Rápidas - inscrições: R$5,00

8: 2º Aberto Feminino comemorativo ao Dia Internacional da Mulher - inscrições: R$5,00 - Distrito Federal(Taguatinga)

14 e 15: Campeonato Paulista Sub 16 e Sub 10 - Catanduva

14 e 15: Campeonato Amazonense Sub 12 - Manaus

15: Torneio Israel Vice-campeão Olímpico de Xadrez - premiação: R$600,00 ($150,00 ao campeão) - São Paulo

21 e 22: Campeonato Amazonense Sub 12 - Manaus

21 e 22: Campeonato Paulista Sub 12 e Sub 8 - Baurú

21 e 22: Campeonato Mineiro Pensado - Sub 20 a Sub 8 - Belo Horizonte

21 e 22: Campeonato Pernambucano da Juventude - Sub 18 a Sub 8 - Petrolina

21 e 22: 2ª fase do Circuito Terra do Sol - Fortaleza

21: Torneio GXBG 44 Anos - premiação: R$400,00 ($150,00 ao campeão) - São Paulo

21: Torneio Bola 7 - Mogi das Cruzes/SP

22: Etapa inaugural "Wilhelm Steinitz" do Circuito Centro-Oeste Paulista, válida pelo Circuito Paulista Dinâmico, com peso 1,5 na classificação deste - premiação:R$630,00 ($200,00 ao campeão) - Botucatú

22: 46º Memorial Júlio Guerra - 2ª etapa do 4º Circuito Solidário GXBG - como sempre as inscrições serão mediante a doação de 1 kg de alimento não-perecível em prol da Casa do Menor de Santo Amaro - São Paulo

22: 2ª etapa do Circuito Aracatiense Rápido, válida pelo Cearense Rápido - premiação:R$100,00 ($40,00 ao campeão) - inscrições: R$5,00

27 a 5/4: Magistral do Recife

28 e 29: Campeonato Paulista Sub 18 e Sub 14 - Santos

28 e 29: 2º Torneio da Fraternidade - Petrolina/PE

28 e 29: Regional Nordeste Escolar - Aracajú

28: 4º Aberto do Clube Atlético Monte Líbano - premiação: R$600,00 ($150,00 ao campeão) - São Paulo

29: Aberto Clube de Xadrez Bruno Florenzano - premiação conforme as inscrições - Bragança Paulista

Gari Kasparov, el juego de la libertad

Retirado do site Magazinedigital.com (Espanha)

Gari Kasparov, el juego de la libertad

Texto de Xavi Ayén
Fotos de Kim Manresa
Gari Kasparov ha marcado la historia del ajedrez. No sólo como número uno o como el maestro que venció al primer gran ordenador, sino como el genio carismático que convirtió el más profundo deporte intelectual en una batalla por su libertad. Fiel a sí mismo, sigue siendo un rebelde en lucha contra el autoritarismo de Putin

Uma ótima reportagem, sem dúvida.

Ótima leitura para todos!